登录 |注册 |我的购物车 |用户中心 |快速购买 |批量查询 |微博 | 微信关注 |收藏本站 中文 English
购物车
您现在的位置: 首页 > 激动剂抑制剂 > 信号转导 > PI 3-Kinase/Akt > 3-Methyladenine

3-Methyladenine

3-甲基腺嘌呤;3-MA;NSC 66389

收藏商品 产品说明书
货号 abs810575
规格 价格
¥454.00
¥605.00
库存状态:现货
¥900.00
¥1200.00
库存状态:现货
¥1875.00
¥2500.00
库存状态:1-2周

数量:

订购信息
您可以从我们的授权经销商处购买absin产品或获得技术支持。若要查看您所在地区的经销商,请从以下的下拉列表中选择。
产品介绍 商品评论 FAQ
概述
描述

3-Methyladenine (3-MA) is a selective PI3K inhibitor for Vps34 and PI3Kγ with IC50 of 25 μM and 60 μM.

别名 3-甲基腺嘌呤;3-MA;NSC 66389
靶点 Vps34;PI3Kγ
性能
外观 白色至浅黄色结晶性粉末
保存方法 store at -20℃ for one year(Powder);
in DMSO or others solvent store at 2-4℃ for two weeks, at -80℃ for six months.
纯度 ≥98%
分子量 149.15
分子结构式
化学式 C6H7N5
溶解性 Water :10 mg/mL warmed (67.04 mM)
Ethanol :4 mg/mL (26.81 mM)
DMSO :3 mg/mL warmed (20.11 mM)
CAS号 5142-23-4
生物活性
In vitro The slight preference for Vps34 prevention by 3-Methyladenine probably arises from a hydrophobic ring specific to Vps34, which encircles the 3-methyl group of 3-Methyladenine. 3-Methyladenine has been reported to cause cancer cell death under both normal and starvation conditions. 3-Methyladenine could also suppress cell migration and invasion independently of its ability to inhibit autophagy, implying that 3-Methyladenine possesses functions other than autophagy suppression. 3-Methyladenine elicits caspase-dependent cell death that is independent of autophagy inhibition. Treatment with 5 mM 3-Methyladenine reduces the percentage of glucose-starved HeLa cells displaying GFP-LC3 puncta to 23%. The levels of LC3-I are increasing and the levels of LC3-II are decreasing between 12 and 48 hours in cells that are treated with 3-Methyladenine. Conversion of LC3-I to LC3-II is suppressed by 3-Methyladenine. Treatment of HeLa cells with 3-Methyladenine at 2.5 mM or 5 mM for one day does not affect cell viability, whereas treatment with 10 mM 3-Methyladenine for one day causes a 25.0% decrease in cell viability. Treatment of cells with 2.5, 5 or 10 mM 3-Methyladenine for two days causes 11.5%, 38.0% and 79.4% decrease in viability, respectively. 3-Methyladenine decreases cell viability in a time- and dose-dependent manner. 3-Methyladenine significantly shortens the duration of nocodazole-induced-prometaphase arrest. Suppression of autophagy by 3-Methyladenine inhibits SU11274-induced cell death. Prolonged treatment with 3-Methyladenine (up to 9 hours) induces significant LC3 I to II conversion in wild type MEFs. Prolonged treatment with 3-Methyladenine, but not wortmannin, markedly increases GFP-LC3 punctuation/aggregation. 3-Methyladenine-induced LC3 conversion and free GFP liberation are ATG7-dependent. 3-Methyladenine treatment leads to evident increase of p62 protein level. 3-Methyladenine increases the p62 level even in Atg5−/− MEFs as well as in cells with DOX-mediated deletion of ATG5. 3-Methyladenine inhibits class I and class III PI3K in different temporal patterns. 3-Methyladenine-induced LC3 I to LC3 II conversion is dramatically compromised in Tsc2−/− cells compared with wild type cells.3-Methyladenine disrupts the anti-autophagic function of mTOR complex 1.
In vivo 3-Methyladenine blocks autophagy through its effect on class III phosphatidylinositol 3-kinase (PI3K). 3-Methyladenine treatment does not alter the degree of hemorrhage compared with the subarachnoid hemorrhage (SAH) group. 3-Methyladenine pretreatment significantly aggravates neurological symptoms when compared with the SAH + vehicle group. Autophagy is decreased when 3-Methyladenine treatment is applied. Conversely, cleaved caspase-3 is markedly up-regulated in the SAH + 3-Methyladenine group. In line with the up-regulation of cleaved caspase-3 expression, the number of TUNEL-positive cells in the right cortex is significantly increased in the SAH + 3-Methyladenine group compared with the SAH + vehicle group.